

S1A THRU S1M

Surface Mount Glass Passivated Rectifiers

Reverse Voltage - 50 to 1000Volts Forward Current - 1.0 Amperes

Features

- For surface mounted applications
- Low reverse leakage current
- Low forward voltage drop
- High surge capacity
- Meet UL flammability classification 94V-0
- AEC-Q101 qualified

Mechanical Data

- Case: JEDEC SMA molded plastic
- Polarity: Color band denotes cathode
- Mounting position: Any

Applications

• For use in low voltage, high frequency inverters, polarity protection applications

.065 (1.65) .049 (1.25) .049 (1.25) .181 (4.60) .157 (4.00) .060 (1.52) .030 (0.76) .208 (5.28) .002 (.051)

Package Outline Dimensions in Inches (Millimeters)

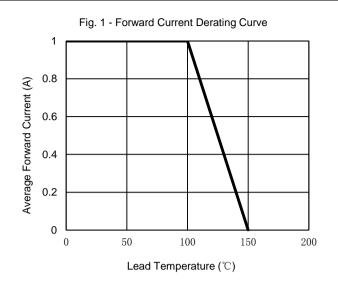
Maximum Ratings and Electrical Characteristics

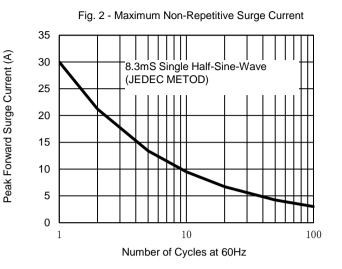
Rating at 25℃ ambient temperature unless otherwise specified.

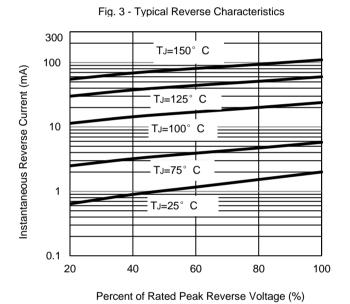
Single phase, half wave, 60Hz, resistive or inductive load.

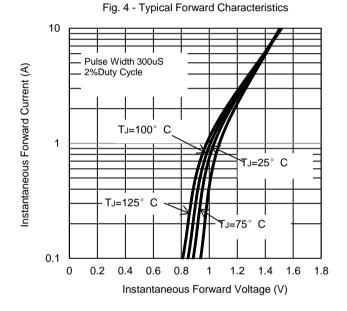
For capacitive load, derate current by 20%.

Symbol	S1A	S1B	S1D	S1G	S1J	S1K	S1M	Unit
VRRM	50	100	200	400	600	800	1000	V
VRMS	35	70	140	280	420	560	700	V
VDC	50	100	200	400	600	800	1000	V
I(AV)	1.0							Α
Ігем	20							Α
IFSM	IFSW 30							Α .
l ² t	3.7						A ² s	
VF	1.1							V
10	5.0							uA
IK	100							uA
Cı	10							pF
Rejc	30							°C/W
TJ	-55 to+150							$^{\circ}\!\mathbb{C}$
Тsтg	-55 to+150							$^{\circ}\!\mathbb{C}$
	VRRM VRMS VDC I(AV) IFSM I²t VF IR CJ R0JC TJ	VRRM 50 VRMS 35 VDC 50 I(AV) IFSM I²t VF IR CJ RØJC TJ	VRRM 50 100 VRMS 35 70 VDC 50 100 I(AV) IFSM I²t VF IR CJ ReJC TJ	VRRM 50 100 200 VRMS 35 70 140 VDC 50 100 200 I(AV) IFSM I²t VF IR CJ ReJC TJ	VRRM 50 100 200 400 VRMS 35 70 140 280 VDC 50 100 200 400 I(AV) 1.0 IFSM 30 I²t 3.7 VF 1.1 IR 5.0 100 100 CJ 10 ReJC 30 TJ -55 to+150	VRRM 50 100 200 400 600 VRMS 35 70 140 280 420 VDC 50 100 200 400 600 I(AV) 1.0 IFSM 30 I²t 3.7 VF 1.1 IR 5.0 100 CJ ReJC 30 TJ -55 to+150	VRRM 50 100 200 400 600 800 VRMS 35 70 140 280 420 560 VDC 50 100 200 400 600 800 I(AV) 1.0 IFSM 30 I ² t 3.7 VF 1.1 IR 100 CJ 10 ReJC 30 TJ -55 to+150	VRRM 50 100 200 400 600 800 1000 VRMS 35 70 140 280 420 560 700 VDC 50 100 200 400 600 800 1000 I(AV) 1.0 30 <t< td=""></t<>


Notes: 1. 300uS pulse width, 2%duty cycle.


- 2. Measured at 1.0 MHz and applied reverse voltage of 4.0V DC.
- 3. The typical data above is for reference only .


S1*-13-00-A001


Rev. 10, 1-Nov-2019

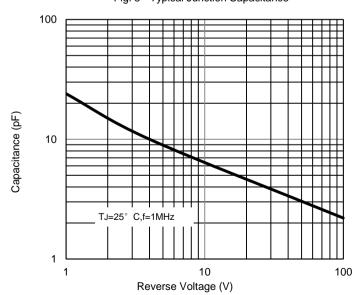


Fig. 5 - Typical Junction Capacitance

The curve above is for reference only.

S1*-13-00-A001 Rev. 10, 1-Nov-2019

Disclaimer

ALL specifications and data are subject to be changed without notice to improve reliability function or design or other reasons.

HY makes no warranty, representation or guarantee regarding the suitability of the products for any particular purpose or the cotinuing production of any product. To the maximum extent permitted by applicable law, HY disclaims (i) any and all liability arising out of the application or use of any product, (ii) any and all liability, including without limitation special, consequential or incidental damages, and (iii) any and all implied warranties, including warranties of fitness for particular purpose, non-infringement and merchantability.

Statements regarding the suitability of products for certain types of applications are based on HY's knowledge of typical requirements that are often placed on HY products in generic applications. Such statements are not binding statements about the suitability of products for a particular application. It is the customer's responsibility to validate that a particular product with the properties described in the product specification is suitable for use in a particular application. Parameters provided in datasheets and specifications may vary in different applications and performance may vary over time. All operating parameters, including typical parameters, must be validated for each customer application by the customer's technical experts. Product specifications do not expand or otherwise modify HY's terms and conditions of purchase, including but not limited to the warranty expressed therein.

Except as expressly indicated in writing, HY products are not designed for use in medical, life-saving, or life-sustaining applications or for any other applications in which the failure of the HY product could result in personal injury or death. Customers using or selling HY products not expressly indicated for use in such applications do so at their own risk. Please contact authorized HY personnel to obtain written terms and conditions regarding products designed for such applications.

No license, express or implied, by estoppel or otherwise, to any intellectual property rights is granted by this document or by any conduct of HY. Product names and markings noted herein may be trademarks of their respective owners.

Rev. 10, 1-Nov-2019