FAST HIGH VOLTAGE TRANSISTOR SWITCHES

Features

Nanoseconds Rise Time

Very Large di/dt

Low Turn-On Jitter

Short Delay Time

High Frequencies

Low Trigger Voltage

Galvanic Isolation

Reliable Switching

Applications

HV Pulse Generators

Pockels Cell Drivers

Power Tube Drivers

Deflection Grid Drivers

Crowbar Switches

EMC Test Equipment

Radar Modulators

Laser Electronics

HTS 20-08 2000 VOLTS / 80 AMPS

HTS 30-06 3000 VOLTS / 60 AMPS

HTS 50-06 5000 VOLTS / 60 AMPS

HIGH VOLTAGE / HIGH CURRENT WITH FIXED ON-TIME

- Patented -

DESCRIPTION

These switches are designed for high voltage, high current switching applications in which loads of very low impedances (e.g. large capacitances) must be driven with very short transition times. Compared to conventional high voltage switches using cold cathode tubes, thyratrons or spark gaps, the solid state switches of model series HTS have a very short recovery time, a high repetition rate, low jitter and a lifetime typical for semiconductor devices. Because of the ITL-compatible trigger input, HTS-switches require no complex drive circuitry and no high auxiliary voltages. The switches described in this data sheet have a fixed on-duration of 150 nanoseconds which can be extented optionally up to 100 microseconds. Due to the galvanic isolation of more than 10 KVDC, positive as well as negative voltages can be switched on or off, the switches can also be floated at a high potential.

SPECIFICATION	SYMBOL	CONDITION / CONNENT	20-08	30-06	50-06	UNIT
Max. Operating Voltage	Vo	Ioff ≤ 100 µA	2000	3000	5000	VDC
Isolation Strength	Vī	Continuously	>10000	>10000	>10000	VDC
Max. Peak Current	IP(max)	t, ≤ 50 ns	80	60	60	ADC
Static On-Resistance	Rstat	IL = 0.1 X IP(max)	1	3	5	Ohm
Max. Off-State Current	Ioff	O.8xVo	10	10	10	NADC
Turn-On Delay Time	td(on)	At IP(max)	50	50	50	ns
Turn-On Rise Time	tr(on)	IL= 0.1xIP(max), Vo=2kVDC	5	4.5	4.0	ns
		IL= IP(max), Vo=2kVDC	15	14	15	ns
On-Time	ton	-20+10%	-	150		ns
Recovery Time	tro	(Min. Pulse Spacing)		300		ns
Typical Turn-On Jitter	tj(on)	Vaux = 5,0 VDC, f = 10 kHz		100	**************************************	PS
Max. Switching Frequency	f(max)	Continuously	25	40	25	kHz
Cont. Power Dissipation	Pd(max)	Tcase ≤ 25 °C	15	10	15	Watts
Derating		Above 25 °C		0.3		W/°C
Temperature Range	To		-1060			°C
Auxiliary Supply Voltage	Vaux	± 5%	5.0			VDC
Auxiliary Supply Current	Iaux	f = f(max)	300			mADC
Trigger Signal Voltage	Vtr	> 3 VDC recommended	210			VDC
Dimensions				70x50x27		mm ³
Weight			1	160		g

All data and specifications subject to change without notice. Custom designed devices on request.

Fig. 2a: Example of Connection

Fig. 2b: Pulse Shape, $R_1 = 1kOhm$; $C_1 = 30pF$; 1kV/div.

Fig. 5: Definition of pulse parameters

Fig. 2c: Pulse Shape, R_L = 1MOhm; C_L = 30pF; 1kV/div.

Fig. 2e: 2 MHz-Burst, $R_l = 1kOhm$; 1kV/div.

Fig. 4: Basic Circuit Configurations

Ordering Information:

HTS 20-08
HTS 30-06
HTS 50-06
Option 01
Option 02
Option 03
Option 04
Option 05
Option 05
Option 05
Option 05
Option 06
UL-94-VO Casting Resin

